Abstract

The modern semiclassical theory of a Bloch electron in a magnetic field encompasses the orbital magnetization and geometric phase. Beyond this semiclassical theory lies the quantum description of field-induced tunneling between semiclassical orbits, known as magnetic breakdown. Here, we synthesize the modern semiclassical notions with quantum tunneling-into a single Bohr-Sommerfeld quantization rule that is predictive of magnetic energy levels. This rule is applicable to a host of topological solids with unremovable geometric phase, that also unavoidably undergo breakdown. A notion of topological invariants is formulated that nonperturbatively encode tunneling, and is measurable in the de Haas-van Alphen effect. Case studies are discussed for topological metals near a metal-insulator transition and overtilted Weyl fermions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.