Abstract
With recent increasing trend towards development of “easy to fabricate” and simple millifluidic systems that could provide required control as well as high throughput, we present here a demonstration of potential opportunities for controlled droplet/slug formation within a flow-focusing millifluidic chip. Numerical simulations supported by experimental evidence show that the millifluidic device provides similar control in slug formation as in the case of microfluidic devices. More specifically, our investigations reveal that the acquired slug volume depends on the squeezing volume (Vsqueeze) and blockage volume (Vblock) in the squeezing regime. While the squeezing volume (Vsqueeze) can be tuned by manipulating the flow rate of the continuous phase, the blockage volume (Vblock) depended only on the geometry of the focusing region. Based on numerical simulations, two millifluidic flow focusing channel designs to produce small slugs were suggested. The slugs were utilized for the synthesis of uniform copper nanoparticles. The findings are anticipated to have implications for a number fields ranging from fluid dynamics, lab-on-a-chip devices, chemical engineering, nanomaterials synthesis, protein crystallization to advanced drug delivery as well as chip fabrication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.