Abstract
A Lie system is a nonautonomous system of first-order ordinary differential equations whose general solution can be written via an autonomous function, the so-called (nonlinear) superposition rule of a finite number of particular solutions and some parameters to be related to initial conditions. This superposition rule can be obtained using the geometric features of the Lie system, its symmetries, and the symmetric properties of certain morphisms involved. Even if a superposition rule for a Lie system is known, the explicit analytic expression of its solutions frequently is not. This is why this article focuses on a novel geometric attempt to integrate Lie systems analytically and numerically. We focus on two families of methods based on Magnus expansions and on Runge–Kutta–Munthe–Kaas methods, which are here adapted, in a geometric manner, to Lie systems. To illustrate the accuracy of our techniques we analyze Lie systems related to Lie groups of the form SL(n,R), which play a very relevant role in mechanics. In particular, we depict an optimal control problem for a vehicle with quadratic cost function. Particular numerical solutions of the studied examples are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.