Abstract

BackgroundFew studies have looked into age-related variations in femur shape. We hypothesized that three-dimensional (3D) geometric morphometric analysis of the distal femur would reveal age-related differences. The purpose of this study was to show that differences in distal femur shape related to age could be identified, visualized, and quantified using three-dimensional (3D) geometric morphometric analysis.MethodsGeometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions. These analyses were used to identify trends in bone shape in various age-based subgroups (<40, 40–60, >60).ResultsOnly the average bone shape of the < 40-year subgroup was statistically different from that of the other two groups. When the population was divided into two subgroups using 40 years of age as a threshold, the subject's age was correctly assigned 80% of the time.DiscussionAge-related differences are present in this bone segment. This reliable, accurate method could be used for virtual autopsy and to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France.ConclusionManufacturers of knee replacement implants will have to adapt their prosthesis models as the population evolves over time.

Highlights

  • Few studies have looked into age-related variations in femur shape

  • The review of literature by Ozer et al has shown that sex can be estimated using femoral dimorphism (Ozer & Katayama 2008)

  • We hypothesized that three-dimensional (3D) geometric morphometric analysis of the distal femur would reveal age-related differences

Read more

Summary

Introduction

Few studies have looked into age-related variations in femur shape. We hypothesized that three-dimensional (3D) geometric morphometric analysis of the distal femur would reveal age-related differences. The purpose of this study was to show that differences in distal femur shape related to age could be identified, visualized, and quantified using three-dimensional (3D) geometric morphometric analysis. Geometric morphometric analysis can be used to quantify morphological features (Cavaignac et al 2016) This technique allows the overall shape of an object to be analyzed with its geometry intact, making statistical analysis possible (Hennessy & Stringer 2002). It was developed to quantify the shape of rigid structures consisting of curves and bulges that are not easy to interpret using traditional metric methods (Bookstein 1978). This method has demonstrated its usefulness in physical

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call