Abstract
We define the geometric measure of mixing of quantum state as a minimal Hilbert-Schmidt distance between the mixed state and a set of pure states. An explicit expression for the geometric measure is obtained. It is interesting that this expression corresponds to the squared Euclidian distance between the mixed state and the pure one in space of eigenvalues of the density matrix. As an example, geometric measure of mixing for spin-1/2 states is calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.