Abstract
We study tensor analysis problems motivated by the geometric measure of quantum entanglement. We define the concept of the unitary eigenvalue (U-eigenvalue) of a complex tensor, the unitary symmetric eigenvalue (US-eigenvalue) of a symmetric complex tensor, and the best complex rank-one approximation. We obtain an upper bound on the number of distinct US-eigenvalues of symmetric tensors and count all US-eigenpairs with nonzero eigenvalues of symmetric tensors. We convert the geometric measure of the entanglement problem to an algebraic equation system problem. A numerical example shows that a symmetric real tensor may have a best complex rank-one approximation that is better than its best real rank-one approximation, which implies that the absolute-value largest Z-eigenvalue is not always the geometric measure of entanglement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.