Abstract
Abstract A new geometric interpretation of the Riemann-Liouville and Caputo derivatives of non-integer orders is proposed. The suggested geometric interpretation of the fractional derivatives is based on modern differential geometry and the geometry of jet bundles. We formulate a geometric interpretation of the fractional-order derivatives by using the concept of the infinite jets of functions. For this interpretation, we use a representation of the fractional-order derivatives by infinite series with integer-order derivatives. We demonstrate that the derivatives of non-integer orders connected with infinite jets of special type. The suggested infinite jets are considered as a reconstruction from standard jets with respect to order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.