Abstract
In this paper, we propose the fuzzy Shehu transform method (FSTM) using Zadeh’s decomposition theorem and fuzzy Riemann integral of real-valued functions on finite intervals. As an alternative to standard fuzzy Laplace transform and the fuzzy Sumudu integral transform, we established some potential useful (new or known) properties of the FSTM and validate their applications. Furthermore, the FSTM is coupled with the well-known homotopy analysis method to obtain the approximate and exact solutions of fuzzy differential equations of integer and non-integer order derivatives. The convergence analysis and the error analysis of the suggested technique are provided and supported by graphical solutions. Comparison of the numerical simulations of exact and approximate solutions of two fuzzy fractional partial differential equations are tabulated to further justify the reliability and efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.