Abstract
In this particular article, our focus revolves around the establishment of a geometric inequality, commonly referred to as Chen’s inequality. We specifically apply this inequality to assess the square norm of the mean curvature vector and the warping function of warped product slant submanifolds. Our investigation takes place within the context of locally metallic product space forms with quarter-symmetric metric connections. Additionally, we delve into the condition that determines when equality is achieved within the inequality. Furthermore, we explore a number of implications of our findings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have