Abstract
In this series of papers we aim to provide a mathematically comprehensive framework to the Hamiltonian pictures of quantum field theory in curved spacetimes. Our final goal is to study the kinematics and the dynamics of the theory from the point of differential geometry in infinite dimensions. In this second part we use the tools of Gaussian analysis in infinite dimensional spaces introduced in the first part to describe rigorously the procedures of geometric quantization in the space of Cauchy data of a scalar theory. This leads us to discuss and establish relations between different pictures of QFT. We also apply these tools to describe the geometrization of the space of pure states of quantum field theory as a Kähler manifold. We use this to derive an evolution equation that preserves the geometric structure and avoid norm losses in the evolution. This leads us to a modification of the Schrödinger equation via a quantum connection that we discuss and exemplify in a simple case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.