Abstract

Distance-dependent, pairwise, statistical potentials are based on the concept that the packing observed in known protein structures can be used as a reference for comparing different 3D models for a protein. Here, packing refers to the set of all pairs of atoms in the molecule. Among all methods developed to assess three-dimensional models, statistical potentials are subject both to praise for their power of discrimination, and to criticism for the weaknesses of their theoretical foundations. Classical derivations of pairwise potentials assume statistical independence of all pairs of atoms. This assumption, however, is not valid in general. We show that we can filter the list of all interactions in a protein to generate a much smaller subset of pairs that retains most of the structural information contained in proteins. The filter is based on a geometric method called alpha shapes that captures the packing in a conformation. Statistical scoring functions derived from such subsets perform as well as scoring functions derived from the set of all pairwise interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.