Abstract

To investigate the evolutionary impact of protein structure, the experimentally determined tertiary structure and the protein-coding DNA sequence were collected for each of 1,195 genes. These genes were studied via a model of sequence change that explicitly incorporates effects on evolutionary rates due to protein tertiary structure. In the model, these effects act via the solvent accessibility environments and pairwise amino acid interactions that are induced by tertiary structure. To compare the hypotheses that structure does and does not have a strong influence on evolution, Bayes factors were estimated for each of the 1,195 sequences. Most of the Bayes factors strongly support the hypothesis that protein structure affects protein evolution. Furthermore, both solvent accessibility and pairwise interactions among amino acids are inferred to have important roles in protein evolution. Our results also indicate that the strength of the relationship between tertiary structure and evolution has a weak but real correlation to the annotation information in the Gene Ontology database. Although their influences on rates of evolution vary among protein families, we find that the mean impacts of solvent accessibility and pairwise interactions are about the same.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.