Abstract

Quantitative microstructural analysis of XCT 3D images is key for quality assurance of materials and components. In this paper we implement a Graph Convolutional Neural Network (GCNN) architecture to segment a complex Al-Si Metal Matrix composite XCT volume (3D image). We train the model on a synthetic dataset and we assess its performance on both synthetic and experimental, manually-labeled, datasets. Our simple GCNN shows a comparable performance, measured via the Dice score, to more standard machine learning methods, but uses a greatly reduced number of parameters (less than 1/10 of parameters), features low training time, and needs little hardware resources. Our GCNN thus achieves a cost-effective reliable segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.