Abstract

A new method of map building for mobile robots is presented. Recent developments have focused on grid-based mapping methods which suffer from the drawback of their size, requiring a great deal of memory and prohibiting the use of many path-planning algorithms. In contrast, geometric maps provide a compact alternative which facilitates path-planning. We propose a new method which identifies geometric models of the constraints imposed upon the robot by the environment. A rigorous approach is taken to the process of constraint identification, which is cast as a minimisation problem. A number of primitive geometric objects are used for constraint modelling including line segments, arc segments, cubic segments and, for three degree of freedom systems, polygonal planar patches. A number of operations are also defined which integrate new sensor readings into the existing model. Simulation results are presented for two and three degree of freedom systems, demonstrating the effectiveness of the constraint identification process. A comparative study is also presented which gives guidelines for the proper selection of primitives and operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.