Abstract
Our goal in this paper is to investigate how the geometricshape of a swimmer affects the forces acting upon it in a 3-$D$ incompressible fluid, such as governed by the non-stationary Stokes or Navier-Stokes equations.Namely, we are interested in the following question: How will the swimmer's internal forces (i.e., not moving the center of swimmer's mass when it is not inside a fluid) ``transform'' their actions when the swimmer is placed into a fluid (thus, possibly, creating its self-propelling motion)?We focus on the case when the swimmer's body consists of either small parallelepipedsor balls. Such problems are of interest in biology and engineeringapplication dealing with propulsion systems in fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.