Abstract

We present a review of known results in shape optimization from the point of view of Geometric Analysis. This paper is devoted to the mathematical aspects of the shape optimization theory. We focus on the theory of gradient flows of objective functions and their regularizations. Shape optimization is a part of calculus of variations which uses the geometry. Shape optimization is also related to the free boundary problems in the theory of Partial Differential Equations. We consider smooth perturbations of geometrical domains in order to develop the shape calculus for the analysis of shape optimization problems. There are many applications of such a framework, in solid and fluid mechanics as well as in the solution of inverse problems. For the sake of simplicity we consider model problems, in principle in two spatial dimensions. However, the methods presented are used as well in three spatial dimensions. We present a result on the convergence of the shape gradient method for a model problem. To our best knowledge it is the first result of convergence in shape optimization. The complete proofs of some results are presented in report (Plotnikov and Sokolowski, Gradient flow for Kohn–Vogelius functional).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.