Abstract

In this paper, we compute departures in the black hole thermodynamics induced by either geometric or topological corrections to general relativity. Specifically, we analyze the spherically symmetric spacetime solutions of two modified gravity scenarios with Lagrangians L∼R1+ϵ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {L}\\sim R^{1+\\epsilon }$$\\end{document} and L∼R+ϵG2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {L}\\sim R+\\epsilon \\, \\mathcal {G}^2$$\\end{document}, where G\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {G}$$\\end{document} is the Euler density in four dimensions, while 0<ϵ≪1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ 0<\\epsilon \\ll 1$$\\end{document} measures the perturbation around the Hilbert–Einstein action. Accordingly, we find the expressions of the Bekenstein–Hawking entropy by the Penrose formula, and the black hole temperature and horizon of the obtained solutions. We then investigate the heat capacities in terms of the free parameters of the theories under study. In doing so, we show that healing the problem of negative heat capacities can be possible under particular choices of the free constants, albeit with limitations on the masses allowed for the black hole solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.