Abstract

The physical response of a 1.5-mm-thick, high-density polyethylene geomembrane (GM) is reported when placed on top of a needle-punched geosynthetic clay liner (GCL), buried beneath 50-mm coarse gravel and subjected to vertical pressure in laboratory experiments. Local strains in the geomembrane caused by indentations from the overlying gravel and deflections of a wrinkle in the geomembrane are quantified. A peak strain of 20% was calculated when a flat geomembrane was tested without a protection layer at an applied vertical pressure of 250 kPa. Strains were smaller with a nonwoven needle-punched geotextile protection layer between the gravel and geomembrane. Increasing the mass per unit area of the geotextile up to 2200 g/m 2 reduced the geomembrane strain. However, none of the geotextiles tested were sufficient to reduce the geomembrane strain below an allowable limit of 3%, for the particular 50-mm gravel tested and when subjected to a vertical pressure of 250 kPa. Increasing the initial GCL water content and reducing the stiffness of the foundation layer beneath the GCL were found to increase the geomembrane strains. These local strains were greater when a wrinkle was present in the geomembrane. The wrinkle in the geomembrane experienced a decrease in height and width. The wrinkle deformations lead to larger pressures beside the wrinkle and hence producing larger local strains. A 150-mm-thick sand protection layer was effective in limiting the peak strain to less than 0.3% even with a wrinkle in the geomembrane, at a vertical pressure of 250 kPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.