Abstract

Unconventional reservoirs (NCR) have been responsible for an important revolution in the volume and profile of gas production in the USA and are now arousing interest of other countries e.g. China, Canada, Argentina and Australia. In most of the NCR, the development of production has been made possible through horizontal wells with multiple transverse fractures. In order to optimize the well hydraulic fracturing design for exploration and production’s development of shale gas/shale oil, is required to understand the key parameters that influence in the complex fractures network. In terms of reservoir stimulation through horizontal wells, the practice by smaller operators came before the theory, generating nice results and promoting theoretical development. The recent join of big operators into the unconventional reservoirs environment raised about the huge volumes of fluids and propping agents used in the complex fractures network, have generated some questions about shale gas/shale oil well stimulation. This work presents the main parameters that have influence on the complex fractures network built in shales, aiming to understand their effects in shale rock in order to avoid problems and optimize the hydraulic fracturing design.

Highlights

  • Shale gas/shale oil reservoirs have a significant amount of world hydrocarbon reserves and has a huge importance for the global energetic matrix supply

  • The shale gas/shale oil system is different from the conventional reservoirs (CR) mentioned above, since shales are part of a group known in the literature as non-conventional reservoirs (NCR), because the primary migration has not yet occurred and because the shales have low permo-porous properties

  • The drilling operation is done directly on the source rock, so the shales are classified as source-reservoir rocks (SRR), [4] The ultra-low permeability and various gas accumulation features render the shale gas reservoirs difficult to be developed without hydraulic fracturing treatment, except a few with highly developed natural fracture networks

Read more

Summary

INTRODUCTION

Shale gas/shale oil reservoirs have a significant amount of world hydrocarbon reserves and has a huge importance for the global energetic matrix supply. The drilling operation is done directly on the source rock, so the shales are classified as source-reservoir rocks (SRR), [4] The ultra-low permeability and various gas accumulation features render the shale gas reservoirs difficult to be developed without hydraulic fracturing treatment, except a few with highly developed natural fracture networks [5] With the global commercial development of unconventional hydrocarbon reservoirs with low porosity and permeability, hydraulic fracturing has been one of common practices and major methods for reservoir stimulation [6].

LITERATURE REVIEW
Findings
DISCUSSION AND CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call