Abstract

The Fushime geothermal field is located in a depression close to the coast line. The system is characterized by very high reservoir temperature (>350°C), and a high salinity production fluid. Geological analysis shows that the main reservoir in this field occurs in a fractured zone developed around a dacite intrusion located in the center of the field. High permeability zones recognized by drilling data are found to be associated with fault zones. One of these zones is clearly associated with a NW–SE trending andesite dike swarm which was encountered in some wells. Alteration in the system can be divided into four zones, in order of increasing temperature, based on calcium–magnesium aluminosilicate mineral assemblages: i.e., the smectite, transition, chlorite and epidote zones. The feed zone is located in the chlorite and epidote zones, which can be further divided into three sub-zones according to their potassium or sodium aluminosilicate mineralogy, from the center of the discharge zone: K-feldspar–quartz, sericite–quartz, and albite–chlorite zones. Chloride concentration of the sea-water is 19,800 mg/l, and Br/Cl mole ratio is 1.55. Based on geochemical information, the reservoir chloride concentration of this field ranges from 11,600 to 22,000 mg/kg. The Clres (Cl in reservoir), Br/Cl ratios and stable isotope data indicate that the Fushime geothermal fluid originated from sea-water and is diluted by ground water during its ascent. Some fluids produced from geothermal wells show low pH (about 4). It is thought that sulfide mineral (PbS, ZnS) precipitation during production produces this acidic fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.