Abstract
This data set maps and describes the geology of the Corona North 7.5' quadrangle, Riverside and San Bernardino Counties, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage containing geologic contacts and units, (2) a coverage containing structural data, (3) a coverage containing geologic unit annotation and leaders, and (4) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) a postscript graphic plot-file containing the geologic map, topography, cultural data, a Correlation of Map Units (CMU) diagram, a Description of Map Units (DMU), and a key for point and line symbols, and (2) PDF files of the Readme (including the metadata file as an appendix), and the graphic produced by the Postscript plot file. The Corona North quadrangle is located near the northern end of the Peninsular Ranges Province. All but the southeastern tip of the quadrangle is within the Perris block, a relatively stable, rectangular in plan area located between the Elsinore and San Jacinto fault zones. The southeastern tip of the quadrangle is barely within the Elsinore fault zone. The quadrangle is underlain by Cretaceous plutonic rocks that are part of the composite Peninsular Ranges batholith. These rocks are exposed in a triangular-shaped area bounded on the north by the Santa Ana River and on the south by Temescal Wash, a major tributary of the Santa Ana River. A variety of mostly silicic granitic rocks occur in the quadrangle, and are mainly of monzogranite and granodioritic composition, but range in composition from micropegmatitic granite to gabbro. Most rock units are massive and contain varying amounts of meso- and melanocratic equant-shaped inclusions. The most widespread granitic rock is monzogranite of the Cajalco pluton, a large pluton that extends some distance south of the quadrangle. North of Corona is a body of micropegmatite that appears to be unique in the batholith rocks. Diagonally bisecting the quadrangle is the Santa Ana River. North of the Santa Ana River alluvial deposits are dominated by the distal parts of alluvial fans emanating from the San Gabriel Mountains north of the quadrangle. Widespread areas of the fan deposits are covered by a thin layer of wind blown sand. Alluvial deposits in the triangular-shaped area between the Santa Ana River and Temescal Wash are quite varied, but consist principally of locally derived older alluvial fan deposits. These deposits rest on remnants of older, early Quaternary or late Tertiary age, nonmarine sedimentary deposits that were derived from both local sources and sources as far away as the San Bernardino Mountains. These deposits in part were deposited by an ancestral Santa Ana River. Older are a few scattered remnants of late Tertiary (Pliocene) marine sandstone that include some conglomerate lenses. Clasts in the conglomerate include siliceous volcanic rocks exotic to this part of southern California. This sandstone was deposited as the southeastern-most part of the Los Angeles sedimentary marine basin and was deposited along a rocky shoreline developed in the granitic rocks, much like the present day shoreline at Monterey, California. Most of the sandstone and granitic paleoshoreline features have been removed by quarrying and grading in the area of Porphyry north to Highway 91. Excellent exposures in highway road cuts still remain on the north side of Highway 91 just east of the 91-15 interchange and on the east side of U.S. 15 just north of the interchange. South of Temescal Wash is a series of both younger and older alluvial fan deposits emanating from the Santa Ana Mountains to the southeast. In the immediate southwest corner of the quadrangle is a small exposure of sandstone and pebble conglomerate of the Sycamore Canyon member of the Puente Formation of early Pliocene and Miocene age and sandstone and conglomerate of undivided Sespe and Vaqueros Formations of early Miocene, Oligocene, and late Eocene age. The geologic map data base contains original U.S. Geological Survey data generated by detailed field observation recorded on 1:24,000 scale aerial photographs. The map was created by transferring lines from the aerial photographs to a 1:24,000 scale topographic base. The map was digitized and lines, points, and polygons were subsequently edited using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:24,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units are polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have