Abstract

The GF-7 satellite, China’s inaugural sub-meter-level stereoscopic mapping satellite, has been deployed for a wide range of applications, including natural resource investigation, environmental monitoring, fundamental surveying, and the development of global geospatial information resources. The satellite’s stable platform and reliable imaging systems are crucial for achieving high-quality imaging and precise attitude measurements. However, the satellite’s operation is affected by both internal and external factors, which induce vibrations in the satellite platform, thereby affecting image quality and mapping accuracy. To address this challenge, this paper proposes a novel method for constructing a satellite platform vibration model based on geographic location information. The model is developed by integrating composite data from star sensors and gyroscopes (gyro) with subsatellite point location data. The experimental methodology involves the composite processing of gyro data and star sensor optical axis angles, integration of the processed data through time-matching and normalization, and denoising of the integrated data, followed by trigonometric fitting to capture the periodic characteristics of platform vibrations. The positions of the satellite substellar points are determined from the satellite orbit data. A rigorous geometric imaging model is then used to construct a vibration model with geographic location correlation in combination with the satellite subsatellite point positions. The experimental results demonstrate the following: (1) Over the same temporal range, there is a significant convergence in the waveform similarities between the gyro data and the star sensor optical axis angles, indicating a strong correlation in the jitter information; (2) The platform vibration exhibits a robust correlation with the satellite’s geographic location along its orbit. Specifically, the model reveals that the GF-7 satellite experiences the maximum vibration amplitude between 5° S and 20° S latitude during its ascending phase, and the minimum vibration amplitude between 5° N and 20° N latitude during the descending phase. The model established in this study offers theoretical support for optimizing satellite attitude and mitigating platform vibrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.