Abstract

Geographical discrimination and adulteration analysis play significant roles in edible oil analysis. A novel method for discrimination and adulteration analysis of edible oils were proposed in this study. The two-dimensional correlation spectra of edible oils were obtained by solvents perturbation and the convolutional neural networks (CNNs) were constructed to analyze the synchronous and asynchronous correlation spectra of the edible oils. The differences for geographical origins of oils or oil types could be amplificated through the networks. For different networks, the layer sequences and the filter number of convolutional layers may affect the analysis results. A group of sesame oils from different geographical origins and a group of olive oils adulterated by other vegetable oils were adopted to evaluate the proposed method. The results show that the proposed method may provide an alternative method for edible oil discrimination and adulteration analysis in practical applications. For the two datasets, the prediction accuracy could be 97.3% and 88.5%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.