Abstract

Glutenin largely determines wheat bread baking quality. As high-molecular-weight glutenin subunit (HMW-GS), related to Glu-1 loci, determines wheat flour elasticity, it correlates strongly with bread-making quality. This study was aimed at clarifying genetic variations in bread-making characteristics between East and West Asian wheat landrace germplasms, by investigating HMW-GS allelic composition of 1068 wheat accessions. Herein, the accession number having reported HMW-GS pattern in previous studies was 855. However, the accession number with newly detected HMW-GS patterns was 114. These new HMW-GS patterns were classified into 4 types based on similarity. Eight Korean accessions with these four types were identified. Concerning landrace germplasm nature, 99 accessions showed heterogeneous patterns caused by seed mixture. The Glu-1 loci allelic variation analysis, revealed that the percentages of Glu-A1c (73.6%), Glu-B1b (60.2%), and Glu-D1a (68.5%) were highest at Glu-A1, Glu-B1, and Glu-D1 loci, respectively. The incidence of preferable alleles for bread baking was high in Chinese accessions. In bread-making quality evaluation using Glu-1 score, 24 among 35 accessions with full score were from China. The polymorphic information content index of each origin based on HMW glutenin subunit combination showed that West Asian and neighboring-regional landraces, excluding Afghanistan ones, were more diverse than East Asian landraces excluding Chinese ones. Cluster analysis based on Glu-1 allelic combination showed that many Korean, Japanese, and Afghan accessions were in the same group. However, many Chinese and other West Asian accessions were in the other group despite geographical distance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call