Abstract
The fall webworm, Hyphantria cunea Drury (Lepidoptera: Arctiidae), was introduced from North America to Japan half a century ago. The critical photoperiod for diapause induction and its temperature dependence, as defined by the difference in the critical photoperiod between 20 and 25°C, were investigated in order to understand the mechanisms behind a shift from bi- to trivoltine life cycles. The critical photoperiod for diapause induction was shorter in the southern trivoltine populations than in the northern bivoltine populations, and this was more marked at 25°C than at 20°C. Although the critical photoperiod showed a positive correlation with the original latitude, the correlation was relatively low at both temperatures. Conversely, temperature dependence of the critical photoperiod for diapause induction correlated negatively with the original latitude. The trivoltine populations showed greater temperature sensitivity than the bivoltine populations. These results suggest that an increase in temperature sensitivity of the diapause response to photoperiods was involved in the shift to a trivoltine life cycle. The crossing experiments suggested that the photoperiodic control of diapause induction and its temperature dependence are under polygenic control without sex-linkage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have