Abstract

Although red pine (Pinus resinosa) generally has low or completely lacks variation for molecular markers, some variation is observed for chloroplast microsatellites (cpSSRs). We sampled and examined 10 cpSSRs for 19 populations. Analysis of these populations plus 10 previously studied populations shows that the geographic distribution of genetic diversity over the range of P. resinosa is markedly nonuniform. Although the pattern exhibits little isolation by distance, there is a region centered in northeastern New England where populations contain much greater chloroplast haplotype diversity than elsewhere. This area is band-shaped, with the longer axis nearly parallel with latitude, and very sharply delineated. The area of high diversity was buried by the Laurentide ice sheet. The geographic pattern indicates that P. resinosa is not at equilibrium, and the species has had a more complex postglacial history than typically purported for forest trees in eastern North America. The results suggest that the area of high diversity is a stable transition zone between descendants of two distinct refugia, one in the southern Appalachians and another near the North Atlantic coastline of the Wisconsinian glacial period. Plausible explanations are given that selection between two lineages, along latitudinal zones, may have maintained the transition zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call