Abstract
Wireless Multimedia Sensor Networks (WMSNs) have emerged as the new class of wireless sensor networks (WSNs) to meet the stringent Quality of Service (QoS) requirements of emerging applications. Multipath routing with cross-layer approach appears to be a potential solution for supporting the distinct characteristics of WMSNs. However, due to the broadcast nature of the underlying medium, multiple paths are exposed to inter-path interference. In addition, low-power wireless links are asymmetric, error-prone and unreliable in nature. Consequently, an accurate and stable link quality estimation is essential to guarantee the performance of routing protocol. This paper proposes Triangle link quality metric and minimum inter-path Interference based Geographic Multipath Routing (TIGMR) protocol which finds multiple node-disjoint paths in IEEE 802.15.4 compliant network. This cross-layer routing protocol selects forwarding node based on a triangle link quality metric, remaining energy, and distance while anticipating minimum adjacent path interference effect. In addition, TIGMR protocol avoids Hidden Node Problem (HNP) at the sink node without using Request-To-Send/Clear-To-Send (RTS/CTS) handshake mechanism. Simulation results indicate TIGMR protocol optimizes overall performance and improves network lifetime as compared with state-of-the-art Two-Phase Geographic Forwarding (TPGF) and Link Quality and Energy-Aware Routing (LQEAR) protocols.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of King Saud University - Computer and Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.