Abstract

Mountains host greater avian diversity than lowlands at the same latitude due to their greater diversity of habitats stratified along an elevation gradient. Here we test whether this greater ecological heterogeneity promotes sympatric speciation. We selected accentors (Prunellidae), an avian family associated with mountains of the Palearctic, as a model system. Accentors differ in their habitat/elevation preferences and south-central Siberia and Himalayan regions each host 6 of the 13 species in the family. We used sequences of the mtDNA ND2 gene and the intron 9 of the Z chromosome specific ACO1 gene to reconstruct a complete species-level phylogeny of Prunellidae. The tree based on joint analysis of both loci was used to reconstruct the family's biogeographic history and to date the diversification events. We also analyzed the relationship between the node age and sympatry, to determine the geographic mode of speciation in Prunellidae. Our data suggest a Miocene origin of Prunellidae in the Himalayan region. The major division between alpine species (subgenus Laiscopus) and species associated with shrubs (subgenus Prunella) and initial diversification events within the latter happened within the Himalayan region in the Miocene and Pliocene. Accentors colonized other parts of the Palearctic during the Pliocene-Pleistocene transition. This spread across the Palearctic resulted in rapid diversification of accentors. With only a single exception dating to 0.91 Ma, lineages younger than 1.5 Ma are allopatric. In contrast, sympatry values for older nodes are >0. There was no relationship between node age and range symmetry. Allopatric speciation (not to include peripatric) is the predominant geographic mode of speciation in Prunellidae despite the favorable conditions for ecological diversification in the mountains and range overlaps among species.

Highlights

  • Allopatric speciation appears to be the dominant geographic mode of speciation in birds (Mayr 1942; Cracraft 1982; Chesser and Zink 1994; Friesen and Anderson 1997; Barraclough and Vogler 2000; Coyne and Price 2000; Drovetski 2003; Phillimore et al 2008; Price 2008)

  • The major division between alpine species and species associated with shrubs and initial diversification events within the latter happened within the Himalayan region in the Miocene and Pliocene

  • The topologies of our locus specific and combined dataset trees showed a great deal of similarity suggesting an overall

Read more

Summary

Introduction

Allopatric speciation appears to be the dominant geographic mode of speciation in birds (Mayr 1942; Cracraft 1982; Chesser and Zink 1994; Friesen and Anderson 1997; Barraclough and Vogler 2000; Coyne and Price 2000; Drovetski 2003; Phillimore et al 2008; Price 2008). Sympatric speciation is infrequent and generally associated with unusual reproductive circumstances. African indigobirds (Vidua spp.) that parasitize nests of estrildid finches (Estrildidae) could have diverged sympatrically through host specialization (Sorenson et al 2003). Nest parasitism is uncommon across avian lineages, with host-specificity in parasitism and, the possibility for sympatric speciation being even less common. In the band-rumped storm-petrel (Oceanodroma castro), populations on several Atlantic archipelagos diverge due to breeding allochrony with birds breeding in a 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Ecology and Evolution published by John Wiley & Sons Ltd

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call