Abstract
Ecological restoration of the Wangaloa coal mine in southern New Zealand is hindered by a range of geoecological factors. The site has some substrate acidification (down to pH 1) and acid rock drainage with discharge waters initially down to pH 4, although this has since risen to ca. pH 6. Surface and ground waters develop elevated sulfate (up to 700 mg/kg) during oxidation of pyrite in coal and quartz in waste rock. Coal has elevated boron content (up to 450 mg/kg) and surface waters on coal-rich waste rock have up to 6 mg/L dissolved boron. Evaporation causes formation of salt encrustations dominated by gypsum with minor boron salts. Boron is bioavailable and may be at toxic levels (>200 mg/kg) in some plants. Quartz-rich waste rock is readily eroded, and develops a cm-scale low-nutrient quartz pebble armouring layer with low water retention properties. All waste rocks including loess siltstone have low nutrient contents, and low moisture retention properties, that are barely sufficient for plant establishment. Native plants introduced to the site during rehabilitation have grown on loess substrate (up to fivefold increase in height over 3 years), with poor or no growth on coal-rich and quartz-rich substrates. In contrast, natural colonisation of manuka (Leptospermum scoparium) has been most effective at revegetation on even the most hostile substrates. This natural revegetation has been facilitated by islands of manuka established accidentally during 60 years of mining history. Manuka from local genetic stock is most viable for this revegetation, and introduced manuka seedlings have had a 70% mortality rate. Natural plant colonisation is the key step in overall ecosystem recovery, and invertebrates rapidly colonise beneath new shrubs irrespective of the nature of the substrate from vegetation islands that have high invertebrate numbers and species richness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have