Abstract
Geodynamic origin of carbonatites is debated for several decades. One of hypotheses links their origin to large-volume mantle plumes rising from the core-mantle boundary (CMB). Some evidence exists for temporal and spatial relationships between the occurrences of carbonatites and large igneous provinces (LIPs), and both carbonatites and LIPs can be related to mantle plumes. A good example is the carbonatites of the Maymecha-Kotuy Province in the Polar Siberia, which were formed at the same time as the Siberian superplume event at ca. 250 Ma. In this study we use a recently published absolute plate kinematic modelling to reconstruct the position of 155 Phanerozoic carbonatites at the time of their emplacement. We demonstrate that 69% of carbonatites may be projected onto the central or peripheral parts of the large low shear-wave velocity provinces (LLSVPs) in the lowermost mantle. This correlation provides a strong evidence for the link between the carbonatite genesis and the locations of deep-mantle plumes. A large group of carbonatites (31%) has no obvious links to LLSVPs and, on the contrary, they plot above the “faster-than-average S-wave” zones in the deep mantle, currently located beneath North and Central America and China. We propose that their origin may be associated with remnants of subducted slabs in the mantle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have