Abstract
Both seismological and geodynamic research emphasize that the Aegean Region, which comprises the Hellenic Arc, the Greek mainland and Western Turkey is the most seismically active region in Western Eurasia. The convergence of the Eurasian and African lithospheric plates forces a westward motion on the Anatolian plate relative to the Eurasian one. Western Anatolia is a valuable laboratory for Earth Science research because of its complex geological structure. Izmir is a large city in Turkey with a population of about 2.5 million that is at great risk from big earthquakes. Unfortunately, previous geodynamics studies performed in this region are insufficient or cover large areas instead of specific faults. The Tuzla Fault, which is aligned trending NE–SW between the town of Menderes and Cape Doganbey, is an important fault in terms of seismic activity and its proximity to the city of Izmir. This study aims to perform a large scale investigation focusing on the Tuzla Fault and its vicinity for better understanding of the region's tectonics. In order to investigate the crustal deformation along the Tuzla Fault and Izmir Bay, a geodetic network has been designed and optimizations were performed. This paper suggests a schedule for a crustal deformation monitoring study which includes research on the tectonics of the region, network design and optimization strategies, theory and practice of processing. The study is also open for extension in terms of monitoring different types of fault characteristics. A one-dimensional fault model with two parameters – standard strike-slip model of dislocation theory in an elastic half-space – is formulated in order to determine which sites are suitable for the campaign based geodetic GPS measurements. Geodetic results can be used as a background data for disaster management systems.
Highlights
This paper suggests a schedule for a crustal deformation monitoring study which includes research on the tectonics of the region, network design and optimization strategies, theory and practice of processing
This study suggests a plan for a large scale crustal deformation monitoring project including the relations between the global tectonics, the interpretation of seismicity and tectonics of the study area, appropriate geodetic techniques for deformation monitoring, combination of different techniques, geodetic network design and optimization
This study focused on the idea of dealing with a crustal deformation monitoring project on a particular fault which has a high-seismic risk using geodetic techniques
Summary
This study suggests a plan for a large scale crustal deformation monitoring project including the relations between the global tectonics, the interpretation of seismicity and tectonics of the study area, appropriate geodetic techniques for deformation monitoring, combination of different techniques, geodetic network design and optimization. Deformation measurements performed using geodetic techniques include some critical steps in the processing and design stages. Other parameters such as the location of deformed area or the deformation type should be taken into consideration. The Aegean Region and Western Anatolia are one of the most seismically active and deforming parts of the Alpine-Himalayan orogenic belt. The region is mainly under pure shear stress from an internally deforming counter-clockwise rotation of the Anatolian Plate relative to the Eurasian one. There is a multi disciplinary research report in the literature concerning the plate interactions through the whole
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have