Abstract
Atlas-based segmentation is often used to segment medical image regions. For intensity-normalized data, the quality of these segmentations is highly dependent on the similarity between the atlas and the target under the used registration method. We propose a geodesic registration method for interactive atlas-based segmentation using empirical multi-scale anatomical manifolds. The method utilizes unlabeled images together with the labeled atlases to learn empirical anatomical manifolds. These manifolds are defined on distinct scales and regions and are used to propagate the labeling information from the atlases to the target along anatomical geodesics. The resulting competing segmentations from the different manifolds are then ranked according to an image-based similarity measure. We used image volumes acquired using magnetic resonance imaging from 36 subjects. The performance of the method was evaluated using a liver segmentation task. The result was then compared to the corresponding performance of direct segmentation using Dice Index statistics. The method shows a significant improvement in liver segmentation performance between the proposed method and direct segmentation. Furthermore, the standard deviation in performance decreased significantly. Using competing complementary manifolds defined over a hierarchy of region of interests gives an additional improvement in segmentation performance compared to the single manifold segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.