Abstract

In this paper, we introduce notions of nonlinear stabilities for a relative ample line bundle over a holomorphic fibration and define the notion of a geodesic-Einstein metric on this line bundle, which generalize the classical stabilities and Hermitian-Einstein metrics of holomorphic vector bundles. We introduce a Donaldson type functional and show that this functional attains its absolute minimum at geodesic-Einstein metrics, and we also discuss the relations between the existence of geodesic-Einstein metrics and the nonlinear stabilities of the line bundle. As an application, we will prove that a holomorphic vector bundle admits a Finsler-Einstein metric if and only if it admits a Hermitian-Einstein metric, which answers a problem posed by S. Kobayashi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.