Abstract

We consider a notion of balanced metrics for triples (X, L, E) which depend on a parameter alpha, where X is a smooth complex manifold with an ample line bundle L and E is a holomorphic vector bundle over X. For generic choice of alpha, we prove that the limit of a convergent sequence of balanced metrics leads to a Hermitian-Einstein metric on E and a constant scalar curvature Kahler metric in c(1)(L). For special values of alpha, limits of balanced metrics are solutions of a system of coupled equations relating a Hermitian-Einstein metric on E and a Kahler metric in c(1)(L).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.