Abstract
AbstractIn this study, new geochemical, zircon U–Pb, and Lu–Hf isotopic data are presented for volcanics from the Hadataolegai Formation of the central Great Xing'an Range (GXR) in Northeast China. These new data offer insights into the petrogenesis of the volcanics of the Hadataolegai Formation and the tectonic evolution of the Paleo–Asian Ocean (PAO) and Mongol–Okhotsk Ocean (MOO). These volcanics of the Hadataolegai Formation are divided into andesite‐trachyandesites and dacite‐trachydacites. Zircon U–Pb ages show that the volcanics of the Hadataolegai Formation erupted between 230 Ma and 228 Ma during the Late Triassic, which agrees with recently obtained data. The volcanic rocks in this study have low Y (9.9–21.1 ppm) and Yb (0.78–2.02 ppm) contents, high Sr (444–954 ppm) contents, and slight Eu anomalies (δEu = 0.82 to 0.94), similar to ‘adakite‐like’ rocks. The dacites were formed by fractional crystallization of coeval andesitic magmas. The zircons within the andesite and trachyandesite yield higher positive εHf(t) values (+6.3 to +12.0) and model ages (TDM2) between 860 Ma and 453 Ma, which indicates that the magmas were generated by a newly accreted continental crustal source. Moreover, some of the volcanics are relatively high in MgO contents. These characteristics indicate that the volcanic magmas were derived from the partial melting of delaminated lower crust and mixing with mantle materials. Combining these data with previous studies, we suggest that the magmatism in the central GXR was governed by extension due to the closure of the PAO and the back‐arc extension associated with the southward subduction of the MOO plate (western GXR, near the Erguna Block).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have