Abstract

Abstract. A multi-method investigation into Lauzière granite, located in the external Belledonne massif of the French Alps, reveals unusually hot hydrothermal conditions in vertical open fractures (Alpine-type clefts). The host-rock granite shows sub-vertical mylonitic microstructures and partial retrogression at temperatures of < 400 ∘C during Alpine tectonometamorphism. Novel zircon fission-track (ZFT) data in the granite give ages at 16.3 ± 1.9 and 14.3 ± 1.6 Ma, confirming that Alpine metamorphism was high enough to reset the pre-Alpine cooling ages and that the Lauzière granite had already cooled below 240–280 ∘C and was exhumed to < 10 km at that time. Novel microthermometric data and chemical compositions of fluid inclusions obtained on millimetric monazite and on quartz crystals from the same cleft indicate early precipitation of monazite from a hot fluid at T > 410 ∘C, followed by a main stage of quartz growth at 300–320 ∘C and 1.5–2.2 kbar. Previous Th-Pb dating of cleft monazite at 12.4 ± 0.1 Ma clearly indicates that this hot fluid infiltration took place significantly later than the peak of the Alpine metamorphism. Advective heating due to the hot fluid flow caused resetting of fission tracks in zircon in the cleft hanging wall, with a ZFT age at 10.3 ± 1.0 Ma. The results attest to the highly dynamic fluid pathways, allowing the circulation of deep mid-crustal fluids, 150–250 ∘C hotter than the host rock, which affect the thermal regime only at the wall rock of the Alpine-type cleft. Such advective heating may impact the ZFT data and represent a pitfall for exhumation rate reconstructions in areas affected by hydrothermal fluid flow.

Highlights

  • Geochronological datasets in external parts of mountain belts are primordial to date metamorphism, deformation, and fluid activity; to model exhumation rates; and to assess the role of tectonic activity, topography, and climate influence on orogenic evolution

  • This study reveals the potential of investigating fluid inclusions in Alpine-type cleft accessory minerals used more commonly for U-total homogenization (Th)-Pb geochronology

  • Geochronological constraints on cleft monazite and zircon fission-track (ZFT), show that the fluid circulation took place when the host rock had already cooled below 240–280 ◦C, and heating of the wall rock lasted < 3 Myr

Read more

Summary

Introduction

Geochronological datasets in external parts of mountain belts are primordial to date metamorphism, deformation, and fluid activity; to model exhumation rates; and to assess the role of tectonic activity, topography, and climate influence on orogenic evolution. Geochronological data can either be interpreted as apparent cooling ages or crystallization ages. Apparent cooling ages are assumed to record the time at which a rock cooled below the closure temperature of the thermochronometer (Reiners and Brandon, 2006). Exhumation rates can be derived by correlating the apparent cooling ages with the closure depth for a given geothermal gradient (Brandon et al, 1998; Willet and Brandon, 2013). For geochronometers with closure temperatures above the rock or mineral (re)crystallization temperature, geochronological data record the age of crystallization.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call