Abstract

Geochemical analyses of major oxides, trace, and rare-earth elements (REE) were examined on the ~70 m core sediments collected from the southeast coast of Bangladesh to determine sediment provenance, maturity, and chemical weathering conditions. The sediment samples contained high SiO2 (62-91 wt.%) and low Al2O3 (~5-17 wt.%) contents and showed a marked negative correlation (r = -0.99) with strong linear trends, indicating that SiO2 was mainly controlled by the quartz content rather than aluminosilicates. Substantial depletion of major labile elements (Na2O, CaO, K2O, Ba, and Sr) compared to the upper continental crust (UCC) indicates the destruction of feldspar during chemical weathering in the source area. The chondrite-normalized REE patterns show LREE enrichment (LaN/YbN, 7.61-14.35), nearly flat HREE (GdN/YbN, 1.33-2.25), and marked Eu anomalies (Eu/Eu*, ~0.58-1.40), suggesting an influx of sediments from felsic provenance. Numerous provenance discrimination diagrams and elemental ratios (Th/Sc, La/Sc, Zr/Sc, Cr/Th, Th/Co, Eu/Eu*, and GdN/YbN) show that the core sediments were derived from felsic source rocks mostly granodiorites, rhyolites, and granites. The REE patterns and parameters are very similar throughout the sequence studied, indicating that the overall source composition in the basin remained unchanged. The Index of Compositional Variability (ICV) values of the sediments varied from 0.79 to 1.83, which indicates immature to moderate compositional maturity. The Chemical Index of Alteration (CIA, ~67 to 81), Chemical Index of Weathering (CIW, ~69 to 91), and Plagioclase Index of Alteration (PIA, ~71 to 92) parameters suggest moderate to high chemical weathering intensity in the source area, which was favored and accelerated by the warm and humid climatic conditions. The elemental ratios (V/Cr, Ni/Co, Cu/Zn, and V/V+Ni) suggested oxic to sub-oxic depositional environment for the accumulation of sediments in the studied Bengal coast. However, the variation of weathering patterns and proxies in the core sediments could be influenced by the strength of South Asian monsoon circulation over the Himalaya-Tibetan Plateau.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.