Abstract

The composition of continental subduction-zone fluids varies dramatically from dilute aqueous solutions at subsolidus conditions to hydrous silicate melts at supersolidus conditions, with variable concentrations of fluid-mobile incompatible trace elements. At ultrahigh-pressure (UHP) metamorphic conditions, supercritical fluids may occur with variable compositions. The water component of these fluids primarily derives from structural hydroxyl and molecular water in hydrous and nominally anhydrous minerals at UHP conditions. While the breakdown of hydrous minerals is the predominant water source for fluid activity in the subduction factory, water released from nominally anhydrous minerals provides an additional water source. These different sources of water may accumulate to induce partial melting of UHP metamorphic rocks on and above their wet solidii. Silica is the dominant solute in the deep fluids, followed by aluminum and alkalis. Trace element abundances are low in metamorphic fluids at subsolidus conditions, but become significantly elevated in anatectic melts at supersolidus conditions. The compositions of dissolved and residual minerals are a function of pressure-temperature and whole-rock composition, which exert a strong control on the trace element signature of liberated fluids. The trace element patterns of migmatic leucosomes in UHP rocks and multiphase solid inclusions in UHP minerals exhibit strong enrichment of large ion lithophile elements (LILE) and moderate enrichment of light rare earth elements (LREE) but depletion of high field strength elements (HFSE) and heavy rare earth elements (HREE), demonstrating their crystallization from anatectic melts of crustal protoliths. Interaction of the anatectic melts with the mantle wedge peridotite leads to modal metasomatism with the generation of new mineral phases as well as cryptic metasomatism that is only manifested by the enrichment of fluid-mobile incompatible trace elements in orogenic peridotites. Partial melting of the metasomatic mantle domains gives rise to a variety of mafic igneous rocks in collisional orogens and their adjacent active continental margins. The study of such metasomatic processes and products is of great importance to understanding of the mass transfer at the slab-mantle interface in subduction channels. Therefore, the property and behavior of subduction-zone fluids are a key for understanding of the crust-mantle interaction at convergent plate margins.

Highlights

  • The composition of continental subduction-zone fluids varies dramatically from dilute aqueous solutions at subsolidus conditions to hydrous silicate melts at supersolidus conditions, with variable concentrations of fluid-mobile incompatible trace elements

  • Continental subduction zones are generally marked by the occurrence of ultrahigh-pressure (UHP) eclogite-facies metamorphic rocks (e.g., Chopin 2003; Liou et al 2009; Zheng 2012; Hermann and Rubatto 2014)

  • UHP eclogite-facies metamorphic rocks are prominent in continental subduction zones, providing us with an excellent target to directly study subduction-zone fluids at subarc depths of >80 km (e.g., Zheng, 2009, 2012)

Read more

Summary

Introduction

The composition of continental subduction-zone fluids varies dramatically from dilute aqueous solutions at subsolidus conditions to hydrous silicate melts at supersolidus conditions, with variable concentrations of fluid-mobile incompatible trace elements. During the subduction of crustal rocks, the aqueous solution is generated by the prograde breakdown of hydrous minerals such as amphibole, biotite, chlorite, lawsonite, muscovite, serpentine, and zoisite with increasing pressure and temperature (e.g., Schmidt and Poli 2003; Rupke et al 2004, Spandler and Pirard 2013) and by the exsolution of molecular water and structural hydroxyl from NAMs (Zheng 2009).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call