Abstract

Organic-rich black shales from the Upper Yangtze Platform from the Upper Ordovician and lower Silurian are considered excellent source rocks and unconventional reservoirs of hydrocarbons in South China. This research combined geochemical analyses and detailed sedimentological observations to investigate the depositional controls on organic-matter abundance in the prolific black mudstone of the Wufeng Formation and Long-1 Member of the lower Silurian Longmaxi. Six primary lithofacies deposited at variable marine water depths and under different water column chemistries were identified from a ∼50 m-long profile based on microscopic observations of sediment texture and structure, and analyses of total organic carbon (TOC) content, major and trace-element abundances, and pyrite framboid size. Our results showed that TOC content is strongly correlated with terrigenous SiO2 content and the non-detrital components of V, U and Mo, suggesting that the accumulation of organic matter in the studied shale was controlled by terrigenous clast fluxes and anoxic water conditions. However, the weak covariance relationship between TOC content and productivity proxies, including P/Ti and Ba/Al, demonstrates that the accumulation of organic matter was not controlled by primary productivity. The three high-productivity lithofacies of the Wufeng Formation and Long-1 Member have low Co*Mn values, indicating active marine upwelling during sedimentary periods. The northern margin of the Upper Yangtze Platform was an open basin system influenced by the Kwangsian Orogeny and global sea-level changes, but oxygen-depleted bottom waters in the basin favoured the accumulation and preservation of sedimentary organic matter, resulting in the formation of organic-rich black shales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.