Abstract

Late Mesozoic volcanism is widespread throughout NE China. On the basis of lithological associations and spatial relationships, the volcanic rocks in the Lesser Hinggan Range can be divided into two formations, i.e., felsic-dominant Fuminghe Formation and overlying mafic-dominant Ganhe Formation. The Dong'an gold deposit, a typical adularia–sericite epithermal system, is spatially closely associated with rhyolitic porphyry, which is a subvolcanic intrusion of the Fuminghe Formation. Total measured, indicated, and inferred resources for the Dong'an deposit are 70 tonnes (2.25 Moz) of gold with the grade of 5.04 g/t Au, making it one of the largest epithermal gold deposits in China. SHRIMP U–Pb zircon and 40Ar/ 39Ar geochronology applied to one rhyolitic porphyry sample and sericite separated from auriferous quartz veins of the main mineralization stage were carried out to constrain magmatic and hydrothermal events. The results suggest that the mineralization age of 107.2 ± 0.6 Ma overlaps with the age of the rhyolitic porphyry 108.1 ± 2.4 Ma. Our new age data indicate that there was a previously unrecognized mineralization event in NE China at 107–108 Ma. Systematic geochemical investigations on the volcanic rocks in the Lesser Hinggan Range show that both Fuminghe and Ganhe Formations are characterized by significant large ion lithophile elements (LILE) and light rare earth elements (LREE) enrichment coupled with high field strength elements (HFSE) depletion, but they have distinct Sr and Nd isotopic compositions. The Fuminghe Formation has relative high 87Sr/ 86Sr ratios of 0.707253 to 0.707373, and negative ε Nd( t) values of −2.78 to −3.05 ( t = 108 Ma), whereas the Ganhe Formation displays slightly lower 87Sr/ 86Sr range of 0.705434–0.705763 and positive ε Nd( t) values of + 0.76 to +1.83. These geochemical data suggest that the rhyolitic magmas of the Fuminghe Formation probably represent the final differentiates of parental andesitic magmas, resulted from the partial melting of mafic lower crust, whereas the volcanic rocks of the Ganhe Formation were produced by fractionation of basaltic magmas generated from partial melting of a mixture of an incompatible element depleted anhydrous lherzolite asthenospheric mantle source and a hydrous enriched lithospheric mantle source in an extensional tectonic setting, in response to upwelling of asthenospheric mantle. The rhyolite porphyries of the Fuminghe Formation are inferred to have supplied heat that drove the convective hydrothermal system at Dong'an deposit, but also provided some of the fluid sources responsible for the development of the Dong'an epithermal system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.