Abstract
The Yangla is the largest and highest-grade antimony deposit (10 kt Sb @ 14.87 %) in the Jinshajiang suture zone, northwestern Yunnan (SW China). Pyrite and stibnite are the main sulfides, and calcite is the main gangue mineral in the antimony ores. Antimony mineralization can be divided into three stages: pre-ore stage pyrite and quartz, syn-ore stage (incl. early, main and late sub-stage) stibnite-pyrite-calcite-quartz, and supergene stage valentinite and limonite. The trace element compositions of the three pyrite and two stibnite generations have been analyzed by (LA-)ICP-MS here. The bulk ore-related calcite trace element compositions were also measured by ICP-MS. Trace element correlations and principal component analysis (PCA) show that the majority of trace elements occur as solid solution and micro-/nano-inclusions in pyrite and stibnite. In pyrite, the Sb substitutes into the crystal lattice with Tl, Cu and Ag via (Tl++Cu++Ag+) + Sb3+ ↔ 2Fe2+. Gold occurs as invisible gold (Au+) and enters pyrite via the coupled substitution of As3+Au3+□ ↔ 3Fe2+ and/or As3+Au3+□ ↔ 3Cu2+. In stibnite, the Cu, Pb and As enter the crystal lattice via the coupled substitution of 2Sb3+ ↔ Cu+ + Pb2+ + As3+. Trace element features of calcite are highly similar to the Devonian Linong Formation (2nd member) marble, suggesting that the ore-forming fluid is closely associated with the marble. Syn-ore calcite is characterized by its higher Fe, Mn and MREE concentrations than the pre-/post-ore calcite, and can be regarded as a geochemical fingerprint for metallogenic prediction. The δCe (0.67–0.83, avg. 0.75) and δEu (1.40–2.51, avg. 1.89) values suggest that the antimony precipitation occurred under reducing to weakly oxidizing conditions. The atomic Yb/Ca, Yb/La, Tb/Ca, and Tb/La ratios of the syn-ore calcite imply that the antimony mineralization can be attributed to hydrothermal genesis. This deduction is also supported by that data of pyrite Ⅰ, Ⅱ, and Ⅲ mainly plotted inside the hydrothermal fields in the Co/Ni, As/Ag, Sb/Bi and Co-Ni-As discrimination plots. The Yangla stibnite ore samples mimic stibnite from typical hydrothermal mineralization systems (e.g., Woxi Au-Sb-W deposit, South China) in the Cu vs. Pb plot, which further supports a hydrothermal origin of the antimony. Therefore, we propose that the hydrothermal Sb mineralization is closely related to the Devonian carbonate rocks at Yangla.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.