Abstract

Uranium deposits form in a variety of settings. They are partially controlled by the secular evolution of Earth processes, including deposits in extension-related settings such as the intra-cratonic Rio Grande rift. Plio-Quaternary volcanism, mineral deposits, and hydrothermal spots occur along the Chihuahua Central Graben. The age of the Sierra de Gomez U-deposit is 1.8Ma (based on LA-MC-ICP-MS dating on a uranophane monocrystal), which is contemporaneous with the late mineralization event of the Peña Blanca U-deposit, as well as Rio Grande Rift (RGR)-type deposits in Chihuahua and intraplate volcanism. Studies of fluid inclusions in fluorite and late calcite indicate the presence of hydrocarbons and CH4-rich brine. Homogenization temperatures range from 87 to 112°C, and the mean composition (2.0mol NaCl and 0.3mol CaCl with CH4) is comparable to mineralizing brines in MVT deposits and carbonated hydrocarbon reservoirs. Evolution of C and O stable isotopic values for the calcite cement in the Sierra de Gomez Limestone-hosted U deposit illustrates that two separate calcite precipitation events occurred: (1) travertine filling karst structures in the presence of meteoric water and (2) U mineralization during deep hydrothermal fluid circulation that included interactions with a heat source and basement leaching. In a regional context, a metallogenic model suggests that the Chihuahua Trough area is deep enough to generate fluid migration by hydrothermal and/or compaction processes through RGR extensional faults until a favorable trapping horizon is reached. This causes uranium precipitation because water/rock interaction processes generate a local redox barrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call