Abstract

The aim of the present study is to evaluate geochemical transformation of soil cover in the territory of Erdenet (Mongolia) and to assess the environmental risk associated with soil cover contamination. The objectives of the present study included: (1) the determination of heavy metals (HMs) and metalloids contents in surface horizons of background and urban soils and the assessment of geochemical transformation of the city’s soil cover; (2) the identification of elements’ associations and patterns of their spatial distribution in the soil cover of the city; (3) the assessment of environmental hazard, related to contamination of soils with complexes of HMs and metalloids. Soil–geochemical survey was conducted by the authors in the summer periods of 2010 and 2011. In total, 225 samples, including 32 backgrounds, were collected. Bulk contents of HMs and metalloids in soil samples were analyzed by mass-spectral method with inductively coupled plasma at All-Russian Research Institute of Mineral Raw Materials (Moscow) using Elan-6100 and Optima-4300 devices (Perkin Elmer, USA). Mo, Cu, and Se appeared to be the priority pollutants nearly in all land-use zones. The maximum accumulation of Mo, Cu, Se, As, Sb, and W is restricted to the industrial area where total pollution index of soils (Zc) equals 74.8. Three technogenic associations of elements, derived mainly from petrochemical features of Erdenet ore field and characterized by similar spatial distribution within the city, are identified. Environmental assessment of surface soil horizon geochemistry in Erdenet showed that 1/5 of its area has dangerous and extremely dangerous levels of soil pollution. Experience of the environmental–geochemical assessment of soil cover in the impact zone of mining enterprises could be useful for other fields of the non-ferrous metals with high lithological–geochemical heterogeneity of the territory. It suggests the need of accounting for the geological diversity and specific features of metallogeny of an area. Geochemical indices local enrichment factor/local depletion factor should be calculated against the individual background values for each soil-forming rock. Such approach allows more accurate assessment of the degree of technogenic geochemical transformation of soils and the environmental hazard of pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.