Abstract

Evaporative groundwater-fed lakes in the glaciated North American Great Plains vary widely in chemistry. A contributing cause is chemical variability of source groundwater intercepted by specific lakes, caused in part by differing depths of groundwater circulation. Aqueous chemical characteristics of 61 lakes and 160 groundwater samples were compared for an area where such lakes are common in eastern Montana-western North Dakota. Results indicate that groundwater chemistry varies according to depth in a similar fashion within different aquifers. Lake water evaporation from initial groundwater solutions typical of three depths was geochemically modeled using PHRQPITZ, based on a Pitzer treatment of activities and equilibria. Results show that chemistry of most lake waters in the study area may correspond to that predicted from evaporation of shallow- and intermediate-depth groundwater, but not of deep groundwater as postulated in some previous investigations. Lakes in shallow surface depressions receive water primarily from shallow (local) groundwater flow; lakes located in deep or broad topographic depressions may additionally receive groundwater from deeper circulation. In the field area studied, relative dominance of anions (sulfate vs. carbonate) in brines is a signature for inferred depth of source. Also diagnostic is the suite of brine salts formed (NaSO 4Mg salts for shallow flow; these plus NaCO 3 salts for intermediate depth flow). Such source signatures will vary from area to area according to depth variations in groundwater chemistry and in stratigraphy. Chemical evolution of lake water is a two-stage process, with a groundwater path (influenced by residence time, depth of circulation, aquifer mineralogy, and related factors) and a surface path (influenced by evaporation rates, lake-aquifer hydraulics, and lake geochemical reactions). Groundwater flow patterns may affect the former set of factors, thereby indirectly controlling lake water chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call