Abstract
Abstract The chemical composition, textures and mineral associations of pyrite provide key information that help elucidate the evolution of hydrothermal systems. However, linking the compositional and micro-textural features of pyrite with a specific physico-chemical process, e.g., boiling versus non-boiling, remains elusive and challenging. In this study we examine pyrite geochemical and micro-textural features and relate these results to pyrite-forming processes at the active Cerro Pabellon Geothermal System (CPGS) in the Altiplano of the northern Chile. We integrate electron microprobe analysis (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data with micro-textural observations of pyrite and associated gangue minerals recovered from a ∼500 m long drill core that crosscuts the argillic, sub-propylitic and propylitic alteration zones of the CPGS. Additionally, we carried out a Principal Component Analysis (PCA) in order to inspect and understand the main data structure of the pyrite geochemical dataset. The concentrations of precious metals (Au and Ag), metalloids (As, Sb, Se, Bi and Tl), and base and heavy metals (Cu, Co, Ni and Pb) in pyrite from the CPGS are significant. Among the elements analyzed, As, Cu and Pb are the most abundant with concentrations that vary from a few parts per million (ppm) to wt% levels (up to 4.4 wt% of As, 0.5 wt% of Cu and 0.2 wt% of Pb). Based on contemporaneous gangue mineral associations and textures, the mechanisms of pyrite precipitation in the CPGS were inferred. Pyrite formed during vigorous boiling is characterized by relatively high concentrations of As, Cu, Pb, Ag and Au and lower concentrations of Co and Ni compared to pyrite formed under different conditions. These anhedral to euhedral pyrite grains display zones with a porous texture and abundant mineral micro- to nano-inclusions (mainly galena and chalcopyrite) indicating a formation by rapid crystallization. In contrast, pyrite formed under gentle boiling (more gradual cooling and less abrupt physico-chemical variations than in vigorous boiling) to non-boiling conditions is characterized by a higher concentration of Co and Ni, and relatively low concentrations of As, Cu, Pb, Ag and Au. Texturally, these pyrites form aggregates of euhedral and pristine pyrite crystals with scarce pores and mineral inclusions suggesting formation under steadier physico-chemical conditions. Our results show that pyrite can not only record the chemical evolution of hydrothermal fluids, but can also provide critical information related to physico-chemical process such as boiling and phase separation. Since boiling of aqueous fluids is a common phenomenon occurring in a variety of pyrite-forming environments, e.g., active continental and seafloor hydrothermal systems, and porphyry Cu-epithermal Au-Ag deposits, pyrite compositional and textural features are a valuable complement for discriminating and tracking boiling events in modern and fossil hydrothermal systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have