Abstract

Simple SummaryIn a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient.In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

Highlights

  • The 1,140 km2 study area (cf. Figure 1(a,b)) with its reference location Oberehe (cf. Figure 1(c)) is located in the volcanic West Eifel

  • Though under geological and structural investigation for more than 200 years, only spatially limited information on active fault systems are available at present

  • In a detailed and statistically well based study, it was investigated whether a GeoBioScience-approach can be used to correlate and identify tectonically active fault systems in the 1,140 km2 study area in the West Eifel

Read more

Summary

Introduction

The 1,140 km study area (cf. Figure 1(a,b)) with its reference location Oberehe (cf. Figure 1(c)) is located in the volcanic West Eifel (approx. 100 km SW of Cologne, Germany). The 1,140 km study area (cf Figure 1(a,b)) with its reference location Oberehe (cf Figure 1(c)) is located in the volcanic West Eifel Though under geological and structural investigation for more than 200 years, only spatially limited information on active fault systems are available at present. In a detailed and statistically well based study, it was investigated whether a GeoBioScience-approach can be used to correlate and identify tectonically active fault systems in the 1,140 km study area in the West Eifel. This approach included the mapping of RWA mounds and their spatial distribution, identification of gas anomalies, mapping of tectonic features and statistical analyses

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.