Abstract
In South Korea, air pollution has emerged as a pressing social issue, necessitating data-driven approaches to monitor sources of air pollutants. This study constructed a GEO AI dataset for detecting air pollution sources in urbanized areas, utilizing Landsat 8/9 satellite imagery, Geostationary Environment Monitoring Spectrometer geostationary satellite data, and air quality monitoring network data. The dataset is optimized for semantic segmentation tasks, including labeled data for urban area segmentation, and is designed to enable precise detection of pollution sources within urban regions by integrating satellite imagery and air quality information. Using this dataset, we applied a modified U-Net model to classify pollutant sources in urbanized areas, achieving high performance with an mIoU of 0.8592 and pixel accuracy of 0.9433. These results demonstrate the effectiveness of the GEO AI dataset as a tool for identifying and managing major pollution sources, providing foundational data for air quality monitoring and policy development across South Korea and East Asia. With further integration of additional air pollution data, this dataset is expected to contribute to long-term air quality management and the mitigation of health impacts associated with pollution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have