Abstract
An isometric deformation of an Euclidean submanifold is called genuine if the submanifold cannot be included into a submanifold of larger dimension in such a way that the deformation of the former is given by an isometric deformation of the latter. The submanifold is said to be genuinely rigid if it has no genuine deformations. In this paper we study the deformation problem in codimension two for the classes of elliptic and parabolic submanifolds. In spite of having a second fundamental form as degenerate as possible without being flat, i.e., the Gauss map has rank two everywhere, our main result says that generically these submanifolds are genuinely rigid. An additional unexpected deformation phenomenon for elliptic submanifolds carrying a Kaehler structure is described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.