Abstract

We introduce and study a banded random matrix model describing sparse, long-range quantum hopping in one dimension. Using a series of analytic arguments, numerical simulations, and a mapping to a long-range epidemics model, we establish the phase diagram of the model. A genuine localization transition, with well defined mobility edges, appears as the hopping rate decreases slower than ℓ^{-2}, where ℓ is the distance. Correspondingly, the decay of the localized states evolves from a standard exponential shape to a stretched exponential and finally to a exp(-Cln^{κ}ℓ) behavior, with κ>1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.