Abstract
Polyembryony and male sterility (MS) are essential characters for citrus breeding. MS, coupled with parthenocarpy, allows for addressing the diversification of diploid seedless mandarin varieties, and nucleocytoplasmic MS is the most prevalent system. Polyembryony limits the use of seed parents in scion breeding programs, and the recovery of monoembryonic hybrids to be used as female parents is a crucial pre-breeding component. The objectives of this work were the identification of SNPs closely linked with the genes implied in these traits for marker-assisted selection. Genotyping by sequencing was used to genotype 61 diploid hybrids from an F1 progeny recovered from crossing 'Kiyomi' and 'Murcott' tangors. A total of 6444 segregating markers were identified and used to establish the two parental genetic maps. They consisted of 1374 and 697 markers encompassing 1416.287 and 1339.735 cM for 'Kiyomi' and 'Murcott', respectively. Phenotyping for MS and polyembryony was performed. The genotype-trait association study identified a genomic region on LG8 which was significantly associated with MS, and a genomic region on LG1 which was significantly associated with polyembryony. Annotation of the identified region for MS revealed 19 candidate genes. One SNP KASPar marker was developed and fully validated for each trait.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.